COOKIES: By using this website you agree that we can place Google Analytics Cookies on your device for performance monitoring. |
University of Cambridge > Talks.cam > CMI Student Seminar Series > Stochastic Optimization for Wasserstein Estimators
Stochastic Optimization for Wasserstein EstimatorsAdd to your list(s) Download to your calendar using vCal
If you have a question about this talk, please contact Neil Deo. Optimal transport is a foundational problem in optimization, that allows to compare probability distributions while taking into account geometric aspects. Its optimal objective value, the Wasserstein distance, provides an important loss between distributions that has been used in many applications throughout machine learning and statistics. Recent algorithmic progress on this problem and its regularized versions have made these tools increasingly popular. However, existing techniques (pre-2020) require solving an optimization problem to obtain a single gradient of the loss, thus slowing down first-order methods to minimize the sum of losses, that require many such gradient computations. In this talk, I will introduce an algorithm to solve a regularized version of this problem of Wasserstein estimators, with a time per step which is sublinear in the natural dimensions of the problem. This talk is part of the CMI Student Seminar Series series. This talk is included in these lists:
Note that ex-directory lists are not shown. |
Other listsGBR talks Chemistry Departmental-wide lectures Cambridge University Behavioural Insights Team (CUBIT)Other talksSummary of Day 1 and How it Leads into Day 2 The Ongoing Hunt for Supermassive Black Hole Binaries Carving the world into useful task representations Recent progress on the KLS conjecture and Eldan’s stochastic localization scheme Understanding Myc transcription |