COOKIES: By using this website you agree that we can place Google Analytics Cookies on your device for performance monitoring. |
University of Cambridge > Talks.cam > Cambridge Image Analysis Seminars > Signal Processing and Data Science in Earth Observation
Signal Processing and Data Science in Earth ObservationAdd to your list(s) Download to your calendar using vCal
If you have a question about this talk, please contact Carola-Bibiane Schoenlieb. Geoinformation derived from Earth observation satellite data is indispensable for many scientific, governmental and planning tasks. Cartography, geophysics, resource management, civil security, disaster relief, as well as for planning and decision support are just a few examples. Therefore, the European Commission operates the Copernicus program that guarantees the future free access to remote sensing data delivered by Sentinels, a new fleet of ESA satellites. Germany also operates Earth observation satellites with so far the highest technical quality, including the current TerraSAR-X and TanDEM-X and the future EnMAP, DESIS and Tandem-L missions. Can modern signal processing and machine learning algorithms improve information retrieval from remote sensing data, and hence take advantage of this precious satellite infrastructure more efficiently? In this seminar, several modern signal processing and machine learning concepts, including compressive sensing, nonlocal filters, robust estimators and deep learning, are proposed for solving diverse scientific problems in remote sensing including radar and optical (multispectral and hyperspectral) technologies. A particular focus will be put on data fusion, which has shown an ever-growing relationship with remote sensing. The presented concepts are not only supposed to substantially improve information retrieval from existing sensors but also contribute to the preparation and the design of the next-generation Earth observation satellite missions. In addition, a showcasing geoscience application – global urban mapping – will be highlighted. Biography: Xiaoxiang Zhu is the professor for Signal Processing in Earth Observation (SiPEO, www.sipeo.bgu.tum.de) at Technical University of Munich (TUM) and the German Aerospace Center (DLR), Germany. She is also the founding head of the department of EO Data Science in DLR ’s Earth Observation Center. Zhu received the Master (M.Sc.) degree, her doctor of engineering (Dr.-Ing.) degree and her “Habilitation” in the field of signal processing from TUM in 2008, 2011 and 2013, respectively. She was a guest scientist or visiting professor at the Italian National Research Council (CNR-IREA), Naples, Italy, Fudan University, Shanghai, China, the University of Tokyo, Tokyo, Japan and University of California, Los Angeles, United States in 2009, 2014, 2015 and 2016, respectively. Her main research interests are remote sensing and Earth observation, signal processing, machine learning and data science, with a special application focus on global urban mapping. This talk is part of the Cambridge Image Analysis Seminars series. This talk is included in these lists:Note that ex-directory lists are not shown. |
Other listspsychology Worms and Bugs Combinatorics SeminarOther talksEXOMARS - A MARTIAN SURVIVAL STORY Beetle Collections of Leonard Jenyns and Charles Darwin When DDoS attacks meet traffic engineering Innovative Approaches for Improving Surgical Quality Using Microwell Array Technology to Probe Chemistry and Biology at Their Fundamental Limits |