BEGIN:VCALENDAR
VERSION:2.0
PRODID:-//talks.cam.ac.uk//v3//EN
BEGIN:VTIMEZONE
TZID:Europe/London
BEGIN:DAYLIGHT
TZOFFSETFROM:+0000
TZOFFSETTO:+0100
TZNAME:BST
DTSTART:19700329T010000
RRULE:FREQ=YEARLY;BYMONTH=3;BYDAY=-1SU
END:DAYLIGHT
BEGIN:STANDARD
TZOFFSETFROM:+0100
TZOFFSETTO:+0000
TZNAME:GMT
DTSTART:19701025T020000
RRULE:FREQ=YEARLY;BYMONTH=10;BYDAY=-1SU
END:STANDARD
END:VTIMEZONE
BEGIN:VEVENT
CATEGORIES:Isaac Newton Institute Seminar Series
SUMMARY:Yang-Mills measure on the two-dimensional torus as
a random distribution - Ilya Chevyrev (University
of Oxford)
DTSTART;TZID=Europe/London:20181123T110000
DTEND;TZID=Europe/London:20181123T123000
UID:TALK115096AThttp://talks.cam.ac.uk
URL:http://talks.cam.ac.uk/talk/index/115096
DESCRIPTION:The Yang-Mills measure on a two-dimensional compac
t manifold has been completely constructed as a st
ochastic process indexed by loops. In this talk\,
I will present a construction of the Yang-Mills me
asure on the two-dimensional torus as a random dis
tribution. More specifically\, I will introduce a
space of distributional one-forms for which holono
mies (i.e. Wilson loop observables) along axis pat
hs are well-defined\, and show that there exists a
random variable in this space which induces the Y
ang-Mills holonomies. An important feature of this
space of one-forms is its embedding into Hö\;
lder-Besov spaces\, which commonly appear in the a
nalysis of stochastic PDEs\, with the small scale
regularity expected from perturbation theory. The
construction is based on a Landau-type gauge appli
ed to lattice approximations.
LOCATION:Seminar Room 2\, Newton Institute
CONTACT:INI IT
END:VEVENT
END:VCALENDAR