| COOKIES: By using this website you agree that we can place Google Analytics Cookies on your device for performance monitoring. | ![]() |
University of Cambridge > Talks.cam > Isaac Newton Institute Seminar Series > Optimal Sequential Inference and Decision Making: From Uniform A/B Testing to Gradient-Based Bandits
Optimal Sequential Inference and Decision Making: From Uniform A/B Testing to Gradient-Based BanditsAdd to your list(s) Download to your calendar using vCal
If you have a question about this talk, please contact nobody. SCLW01 - Bridging Stochastic Control And Reinforcement Learning: Theories and Applications Sequential data collection and decision making lie at the core of modern statistical learning, from anytime-valid A/B testing in online experiments to adaptive multi-armed bandit problems. This talk presents recent advances in the design and analysis of optimal algorithms for these two settings. In the first part, I will introduce a framework for anytime-valid, variance-adaptive inference in monotonic processes—such as cumulative distribution functions—that builds on the coin-betting paradigm of game-theoretic statistics and integrates PAC -Bayesian principles to yield tight hypothesis tests that are uniform not only in time but also in space. In the second part, I will focus on stochastic gradient bandits, a fundamental policy-gradient approach to online decision making, and present theoretical results showing how the learning rate governs the algorithm’s regret, revealing sharp thresholds that separate logarithmic and polynomial regimes and depend on the (unknown) sub-optimality gap. (Based on joint work with E. Clerico and H. E. Flynn, and with D. Baudry, E. Johnson, S. Vary, and C. Pike-Burke) This talk is part of the Isaac Newton Institute Seminar Series series. This talk is included in these lists:
Note that ex-directory lists are not shown. |
Other listsClimate & Women - Talk and numeric exhibition ‘Geographies of Radical Difference’ French Graduate Research Seminar 2008/2009Other talksTumour pathology, structure and nomenclature Holomorphic defects in N = 4 SYM at strong coupling Generation-2 proof of the Classification of Finite Simple Groups. TBC External Seminar - Christine Faulkner TBC History of mathematics for mathmos 13 |