Talks.cam will close on 1 July 2026, further information is available on the UIS Help Site
 

University of Cambridge > Talks.cam > Probability > Stochastic heat equation and directed polymers in dimension d=2

Stochastic heat equation and directed polymers in dimension d=2

Add to your list(s) Download to your calendar using vCal

  • UserQuentin Berger (Paris 13) World_link
  • ClockTuesday 02 December 2025, 14:00-15:00
  • HouseMR12.

If you have a question about this talk, please contact Perla Sousi.

In this talk, I will review some of the recent results on the Stochastic Heat Equation (SHE) with multiplicative white noise in dimension d=2. The SHE is a stochastic PDE which is ill-defined in its critical dimension d=2 : in that case, very recent results show that a subtle normalisation procedure is needed to make sense of it. I will present the probabilistic approach to this normalisation procedure, followed by Caravenna, Sun, Zygouras : it is based on the study of the directed polymer model, a statistical mechanics model which can be seen as a discretised version of the SHE . In a very specific critical window for the parameters, the model possess a non-trivial scaling limit, that Caravenna, Sun, Zygouras called Critical 2D Stochastic Heat Flow, and can be interpreted as a (notion of a) solution to the 2D SHE . I will then review some of the properties of this Stochastic Heat Flow and present some of the results based on a joint work with F. Caravenna and N. Turchi.

This talk is part of the Probability series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2025 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity