University of Cambridge > Talks.cam > Isaac Newton Institute Seminar Series > The Waldhausen S-construction as an equivalence of homotopy theories

The Waldhausen S-construction as an equivalence of homotopy theories

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact info@newton.ac.uk.

HHH - Homotopy harnessing higher structures

The notion of unital 2-Segal space was defined independently by Dyckerhoff-Kapranov and Galvez-Carrillo-Kock-Tonks as a generalization of a category up to homotopy. The notion of unital 2-Segal space was defined independently by Dyckerhoff-Kapranov and Galvez-Carrillo-Kock-Tonks as a generalization of a category up to homotopy. A key example of both sets of authors is that the output of applying Waldhausen's S-construction to an exact category is a unital 2-Segal space. In joint work with Osorno, Ozornova, Rovelli, and Scheimbauer, we expand the input of this construction to augmented stable double Segal spaces and prove that it induces an equivalence on the level of homotopy theories. Furthermore, we prove that exact categories and their homotopical counterparts can be recovered as special cases of augmented stable double Segal spaces.




This talk is part of the Isaac Newton Institute Seminar Series series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

© 2006-2018 Talks.cam, University of Cambridge. Contact Us | Help and Documentation | Privacy and Publicity